SeaArt ComfyUI WIKI
  • SeaArt ComfyUI WIKI
  • Core Nodes
    • Advanced
      • conditioning
        • CLIP Text Encode SDXL
        • CLIP Text Encode SDXL Refiner
        • Conditioning Set Timestep Range
        • Conditioning Zero Out
        • Flux
          • CLIPTextEncodeFlux Node for ComfyUI Explained
          • FluxGuidance - ComfyUI Node Functionality Description
      • Loaders
        • Load CLIP
        • Load Checkpoint With Config (DEPRECATED)
        • Diffusers Loader
        • Dual CLIP Loader - How it work and how to use it
        • UNET Loader Guide | Load Diffusion Model
      • Model
        • Model Sampling Continuous EDM
        • Model Sampling Discrete
        • Rescale CFG
      • Model-merging
        • Checkpoint Save
        • CLIPMerge Simple
        • CLIP Save
        • Model Merge Add
        • Model Merge Blocks
        • Model Merge Simple
        • Model Merge Subtract
        • VAE Save
    • Conditioning
      • 3d-models
        • Stable Zero 123 Conditioning
        • Stable Zero 123 Conditioning Batched
      • CLIP Set Last Layer
      • CLIP Text Encode (Prompt)
      • CLIP Vision Encode
      • Conditioning Average
      • Conditioning (Combine)
      • Conditioning (Concat)
      • Conditioning (Set Area)
      • Conditioning (Set Area with Percentage)
      • Conditioning Set Area Strength
      • Conditioning (Set Mask)
      • Apply ControlNet
      • Apply ControlNet (Advanced)
      • gligen
        • GLIGEN Text Box Apply
      • inpaint
        • Inpaint Model Conditioning
      • style-model
        • Apply Style Model
      • unCLIP Conditioning
      • upscale-diffusion
        • SD_4X Upscale Conditioning
      • video-models
        • SVD img2vid Conditioning
    • Image
      • animation
        • Save Animated PNG
        • Save Animated WEBP
      • batch
        • Image From Batch
        • Rebatch Images
        • Repeat Image Batch
      • Empty Image
      • Batch Images
      • Image Composite Masked
      • Invert Image
      • Pad Image for Outpainting
      • Load Image
      • postprocessing
        • Image Blend
        • Image Blur
        • Image Quantize
        • Image Sharpen
      • preprocessors
        • Canny Node
      • Preview Image
      • Save Image
      • transform
        • Image Crop
      • upscaling
        • Upscale Image
        • Upscale Image By
        • Image Scale To Total Pixels
        • Upscale Image (using Model)
    • Latent
      • Latent Upscale
      • Empty Latent Image
      • Latent Upscale By
      • Latent Composite
      • VAE Decode
      • VAE Encode
      • Latent Composite Masked
      • advanced
        • Latent Add
        • Latent Batch Seed Behavior
        • Latent Interpolate
        • Latent Multiply
        • Latent Subtract
      • batch
        • Latent Batch
        • Latent From Batch
        • Rebatch Latents
        • Repeat Latent Batch
      • inpaint
        • Set Latent Noise Mask
        • VAE Encode (for Inpainting)
      • transform
        • Crop Latent
        • Flip Latent
        • Rotate Latent
    • Loaders
      • Checkpoint Loader (Simple)
      • CLIP Vision Loader
      • ControlNet Loader
      • Diff ControlNet Loader
      • GLIGEN Loader
      • Hypernetwork Loader
      • Lora Loader
      • Lora Loader Model Only
      • Style Model Loader
      • unCLIP Checkpoint Loader
      • Upscale Model Loader
      • VAE Loader
      • video-models
        • Image Only Checkpoint Loader (img2vid model)
    • Mask
      • compositing
        • Join Image with Alpha
        • Porter-Duff Image Composite
        • Split Image with Alpha
      • Crop Mask
      • Feather Mask
      • Grow Mask
      • Image Color To Mask
      • Image To Mask
      • Invert Mask
      • Load Image (as Mask)
      • Mask Composite
      • Mask To Image
      • Solid Mask
    • Sampling
      • custom-sampling
        • SamplerCustom
        • samplers
          • KSampler Select
          • Sampler DPMPP_2M_SDE
          • Sampler DPMPP_SDE
        • schedulers
          • Basic Scheduler
          • Exponential Scheduler
          • Karras Scheduler
          • Polyexponential Scheduler
          • SD Turbo Scheduler
          • VP Scheduler
        • sigmas
          • Flip Sigmas
          • Split Sigmas
      • KSampler
      • KSampler (Advanced)
      • Sampler
      • video-models
        • Video Linear CFG Guidance
    • Utils
      • Note
      • Primitive
      • Reroute
      • Terminal Log (Manager)
  • ComfyUI Workflow Example
    • 1-Img2Img
    • 2-2 Pass Txt2Img
    • 3-Inpaint
    • 4-Area Composition
    • 5-Upscale Models
    • 6-LoRA
    • 7-ControlNet
    • 8-Noisy Latent Composition
    • 9-Textual Inversion Embeddings
    • 10-Edit Models
    • 11-Model Merging
    • 12-SDXL
    • 13-Stable Cascade
    • 14-UnCLIP
    • 15-Hypernetworks
    • 16-Gligen
    • 17-3D Examples
    • 18-Video
    • 19-LCM Examples
    • 20-ComfyUI SDXL Turbo Examples
  • How to publish as an AI app
  • FAQ (Must see!!!)
Powered by GitBook
On this page
  • Documentation
  • Input types
  • Output types
  • Workflow Example
  • What is LoRA?
  1. Core Nodes
  2. Loaders

Lora Loader Model Only

PreviousLora LoaderNextStyle Model Loader

Last updated 4 months ago

Documentation

  • Class name: LoraLoaderModelOnly

  • Category: loaders

  • Output node: False

This node specializes in loading a LoRA model without requiring a CLIP model, focusing on enhancing or modifying a given model based on LoRA parameters. It allows for the dynamic adjustment of the model’s strength through LoRA parameters, facilitating fine-tuned control over the model’s behavior.

Input types

Field
Comfy dtype
Description

model

MODEL

The base model for modifications, to which LoRA adjustments will be applied.

lora_name

COMBO[STRING]

The name of the LoRA file to be loaded, specifying the adjustments to apply to the model.

strength_model

FLOAT

Determines the intensity of the LoRA adjustments, with higher values indicating stronger modifications.

Output types

Field
Comfy dtype
Description

model

MODEL

The modified model with LoRA adjustments applied, reflecting changes in model behavior or capabilities.

Workflow Example

What is LoRA?

Imagine that the AI image generator model is like an experienced chef, who has a set of basic cooking techniques and recipes that allow them to create delicious dishes based on given ingredients and instructions. However, different customers may have different tastes and preferences, and this is where adjustments to the basic cooking methods come into play.

LoRA models can be compared to a set of advanced spices and seasonings that can be added to a dish in small amounts to change its flavor, making it more appealing to specific customers. These spices and seasonings may not add much in quantity, but their impact on the dish is significant.

  1. Basic Recipe (Stable Diffusion): This is like the chef’s basic recipe, which provides a general method for generating images.

  2. Personalized Adjustments (LoRA Models): This is like the chef adding specific spices to the dish based on the customer’s taste, which fine-tunes the AI model parameters to generate images with specific styles or characteristics.

  3. Low-Rank Matrix (Technology in LoRA): This can be compared to a carefully selected combination of spices, which are added to the dish in small amounts but can significantly change the taste.

  4. Final Dish (Generated Images): This is like the final dish that is served, which is more appealing to the user due to the personalized adjustments made by the LoRA model.

By fine-tuning with LoRA models, the Stable Diffusion AI image generator model can create “delicious dishes” that are both aesthetically pleasing and tailored to individual preferences, just like a chef can create dishes that satisfy different customers.

View more LoRA guides↓

15KB
LoraLoaderModelOnly-toy-you.json
3-2 LoRA Training (Advance)Master AI art with advanced LoRA training! This guide covers everything from principles and processes to optimizing parameters for stunning, controllable results.