✨
SeaArt Guide
日本語
日本語
  • ✨SeaArt AI 使用ガイド
  • ✨1-基本ページ
  • ✨2-基本機能
    • 2-1 Text to Image
    • 2-2 Img2Img
    • 2-3 コントロールネット
    • 2-4 AIアプリ
      • アプリとして公開する
      • クイックAIアプリ
    • 2-5 AIキャラクター
      • 自分のキャラクターを作成する方法?
      • キャラクターの説明を書くためのヒント
      • 交流の豆知識
    • 2-6 モデル
    • 2-7 投稿
    • 2-8 AI動画生成
      • Txt2Vid
      • Img2Vid
      • カメラコントロール
      • 開始フレームと終了フレーム
    • 2-9 AI オーディオ
    • 2-10 ワークフロー
      • テキストから画像へのワークフロー
      • Img2Img+部分的な再描画
      • コアノード
      • ヒント
    • 2-11 Canvas
    • 2-12 LoRAトレーニング
      • Flux Lora トレーニング
  • ✨3-高度なガイド
    • 3-1 AIアートの原理
    • 3-2 LoRAトレーニング(高度)
      • データセットの作成方法
    • 3-3 ComfyUIガイド
      • 画像変換
      • 画像の再描画
    • 3-4 Canvasガイド
    • コンポジットポスター
  • ✨4-パラメーター
    • 4-1 モデル
    • 4-2 モード
    • 4-3 基本設定
    • 4-4 高級設定
    • 4-5 高級修復
    • 4-6 完全なプロンプトガイド
    • 4-7 プロンプト混合ガイド
  • ✨5-実践的な例
    • AIインフルエンサー
    • ロゴデザイン
    • Eコマースポスター
    • プロンプトテンプレート
    • キャラクターの一貫性を維持する
    • 有用なプロンプト
  • ✨6-恒久的なイベント
    • SeaArt.AIクリエーター奨励プログラム
      • クリエーター奨励プログラムFAQ
    • 高品質モデルの推薦
      • SeaArt Infinity
      • Stable Diffusion 3.5
      • SeaArt Realism
      • NOOBAI XL
      • T-Ponynai3 V6
      • Counterfeit V3.0
      • Temporal Paradox Mix
    • 高品質のAIアプリ推薦
    • 高品質キャラクター推薦
    • 高品質のComfyUIワークフロー推薦
  • ✨7-FAQ
Powered by GitBook
On this page
  • ステップ1:モデルグループを構築
  • ステップ2:元の画像を参照
  • ステップ3:高精細な復元
  1. 3-高度なガイド
  2. 3-3 ComfyUIガイド

画像変換

ComfyUIの画像変換をマスターしよう!このガイドでは、正確なコントロール、顔の参照、高精細なアップスケーリングを使用してImage-To-Imageを強化するための高度な技術を探ります。

Previous3-3 ComfyUIガイドNext画像の再描画

Last updated 9 months ago

思考プロセス:

ComfyUIの画像変換は、WebUIのImg2Imgに似ており、元の画像をアップロードしてモデルを通じてそのスタイルを変更します。しかし、変換の精度を高めるために、いくつかの新しいステップを追加することができます:

1. 元の画像のサイズを制御するためにモデル拡大ノードを追加します。

2. 元の画像に類似性を高める:

a. IPAdapter FaceIDを使用して顔の特徴を参照します。

b. 元の画像プロンプトを逆解析します。

c. ControlNet(OpenPose、Canny、Depth)を追加します。

3. 最終画像をアップスケールします。

ステップ1:モデルグループを構築

Img2Imgテンプレートを基に構築を開始できます。まず、元の画像の背後に「Upscale Image By」ノードを選択的に追加して元の画像のサイズを制御します。必要に応じてLoRAを追加できますが、追加しなくても構いません。「CLIP Set Last Layer」ノードを必要に応じて追加し、このノードを省略することもできます。このノードはレイヤーをスキップすることができ、最終的に対応するノードを接続します。

追加するノード:

Upscale Image By

CLIP Set Last Layer

ステップ2:元の画像を参照

(プロンプトの逆解析 + IPAdapter + Control Net)

  1. プロンプトの逆解析:WD14 Taggerノード

WD14 Taggerノードを検索して追加します。

画像ノードを接続します。

正のプロンプトノードを右クリックして「テキストを入力に変換」を選択し、WD14 Taggerを正のプロンプトノードに接続します。

ただし、これには画像からのプロンプトのみが含まれます。他のプロンプトを追加したい場合は、複数のプロンプトセグメントを一緒に接続できる新しいText Concatenateノードを作成する必要があります。

次に、新しいPrimitiveノードを作成します。Primitiveノードは、任意のノードに接続して関連属性になることができます。

追加のプロンプト、例えばLoRAトリガーワードや品質ワードなどをPrimitiveに入力します。

この時点で、プロンプトには画像から逆解析されたものと入力したものの両方が含まれます。

  1. 次に、顔の特徴を参照するためにIPAdapter FaceIDを設定します:

IPAdapter FaceIDを検索して入力ノードに一致させます。

ノードをドラッグした後、新しいノードを作成します:

ipadapter→ IPAdapter Model Loader

clip_vision→ Load CLIP Vision

insightface→ IPAdapter InsightFace Loader

出力をサンプラーに接続します。

追加するノード:

IPadapter FaceID

IPAdapter Model Loader

Load CLIP Vision

IPAdapter InsightFace Loader

  1. ControlNetの設定

複数のControlNetを追加できるCR Multi-ControlNet Stackノードを使用することをお勧めします。次に、対応する前処理装置を追加します。ControlNetにはOpenPose、Canny、Depthを使用することをお勧めします。最終的なビジュアルニーズに基づいて追加または削除することができます。その後、出力にControlNet適用ノードを追加します:CR Apply Multi-ControlNet。前処理装置の解像度を1024に設定することをお勧めします。

*使用するControlNetのスイッチをオンにすることを忘れないでください。

入力:

正のプロンプトノードと負のプロンプトノードに接続。

出力:

サンプラーに接続。

追加するノード:

CR Multi-ControlNet Stack

CR Apply Multi-ControlNet

ステップ3:高精細な復元

モデルグループと元の画像の参照を設定した後、最終出力で画像の高精細復元ステップを追加できます:

追加するノード:Upscale Image (using Model)

ノードを組み立てた後、それらをグループ化してより見やすく整理できます。

最後に、出力画像に基づいて関連するパラメータを調整する必要があります。例えば、ckpt、LoRAの重み、プロンプトワード、サンプラー、リドロースケールなどです。

この変換の主要なパラメータは次のとおりです:

CLIP _layer:-2

Upscale Image By: 1.5

steps: 40

sampler_name: dpmpp_2m

scheduler: karras

denoise: 0.7

注:SDXLモデルを選択する場合、対応するSDXL LoRAも必要であり、ControlNetをSDXLに調整する必要があります。そうでなければ、画像出力が失敗します。

上記は、画像変換の完全なワークフローです。これに基づいて、最終画像を調整するためにVAEやFreeU_V2を追加することもできます:

FreeU_V2: 主に色を制御し、いくつかのコンテンツを抽出して最適化します。

Load VAE: 画像の色と詳細を微調整します。

このようなワークフローを通じて、さまざまなスタイルへの変換を実現できます。

✨
ComfyUI Image Conversion - Build the Model Group
ComfyUI Image Conversion - BReverse-engineer Prompts: WD14 Tagger Node 1
ComfyUI Image Conversion - BReverse-engineer Prompts: WD14 Tagger Node 2
ComfyUI Image Conversion - BReverse-engineer Prompts: WD14 Tagger Node 3
ComfyUI Image Conversion - Set up the IPadapter FaceID to Reference Facial Features
ComfyUI Image Conversion - Set up the ControlNet
ComfyUI Image Conversion - Add Nodes to Upscale Image 2
ComfyUI Image Conversion - High-Definition Restoration
ComfyUI Image Conversion - Add Nodes to Upscale Image 1
Adjust Image with VAE or FreeU_V2 - Before and After
ComfyUI Image Conversion - Corresponding SDXL Lora
ComfyUI Image Conversion - Adjust Image with VAE or FreeU_V2