SeaArt ComfyUI WIKI
  • SeaArt ComfyUI WIKI
  • Core Nodes
    • Advanced
      • conditioning
        • CLIP Text Encode SDXL
        • CLIP Text Encode SDXL Refiner
        • Conditioning Set Timestep Range
        • Conditioning Zero Out
        • Flux
          • CLIPTextEncodeFlux Node for ComfyUI Explained
          • FluxGuidance - ComfyUI Node Functionality Description
      • Loaders
        • Load CLIP
        • Load Checkpoint With Config (DEPRECATED)
        • Diffusers Loader
        • Dual CLIP Loader - How it work and how to use it
        • UNET Loader Guide | Load Diffusion Model
      • Model
        • Model Sampling Continuous EDM
        • Model Sampling Discrete
        • Rescale CFG
      • Model-merging
        • Checkpoint Save
        • CLIPMerge Simple
        • CLIP Save
        • Model Merge Add
        • Model Merge Blocks
        • Model Merge Simple
        • Model Merge Subtract
        • VAE Save
    • Conditioning
      • 3d-models
        • Stable Zero 123 Conditioning
        • Stable Zero 123 Conditioning Batched
      • CLIP Set Last Layer
      • CLIP Text Encode (Prompt)
      • CLIP Vision Encode
      • Conditioning Average
      • Conditioning (Combine)
      • Conditioning (Concat)
      • Conditioning (Set Area)
      • Conditioning (Set Area with Percentage)
      • Conditioning Set Area Strength
      • Conditioning (Set Mask)
      • Apply ControlNet
      • Apply ControlNet (Advanced)
      • gligen
        • GLIGEN Text Box Apply
      • inpaint
        • Inpaint Model Conditioning
      • style-model
        • Apply Style Model
      • unCLIP Conditioning
      • upscale-diffusion
        • SD_4X Upscale Conditioning
      • video-models
        • SVD img2vid Conditioning
    • Image
      • animation
        • Save Animated PNG
        • Save Animated WEBP
      • batch
        • Image From Batch
        • Rebatch Images
        • Repeat Image Batch
      • Empty Image
      • Batch Images
      • Image Composite Masked
      • Invert Image
      • Pad Image for Outpainting
      • Load Image
      • postprocessing
        • Image Blend
        • Image Blur
        • Image Quantize
        • Image Sharpen
      • preprocessors
        • Canny Node
      • Preview Image
      • Save Image
      • transform
        • Image Crop
      • upscaling
        • Upscale Image
        • Upscale Image By
        • Image Scale To Total Pixels
        • Upscale Image (using Model)
    • Latent
      • Latent Upscale
      • Empty Latent Image
      • Latent Upscale By
      • Latent Composite
      • VAE Decode
      • VAE Encode
      • Latent Composite Masked
      • advanced
        • Latent Add
        • Latent Batch Seed Behavior
        • Latent Interpolate
        • Latent Multiply
        • Latent Subtract
      • batch
        • Latent Batch
        • Latent From Batch
        • Rebatch Latents
        • Repeat Latent Batch
      • inpaint
        • Set Latent Noise Mask
        • VAE Encode (for Inpainting)
      • transform
        • Crop Latent
        • Flip Latent
        • Rotate Latent
    • Loaders
      • Checkpoint Loader (Simple)
      • CLIP Vision Loader
      • ControlNet Loader
      • Diff ControlNet Loader
      • GLIGEN Loader
      • Hypernetwork Loader
      • Lora Loader
      • Lora Loader Model Only
      • Style Model Loader
      • unCLIP Checkpoint Loader
      • Upscale Model Loader
      • VAE Loader
      • video-models
        • Image Only Checkpoint Loader (img2vid model)
    • Mask
      • compositing
        • Join Image with Alpha
        • Porter-Duff Image Composite
        • Split Image with Alpha
      • Crop Mask
      • Feather Mask
      • Grow Mask
      • Image Color To Mask
      • Image To Mask
      • Invert Mask
      • Load Image (as Mask)
      • Mask Composite
      • Mask To Image
      • Solid Mask
    • Sampling
      • custom-sampling
        • SamplerCustom
        • samplers
          • KSampler Select
          • Sampler DPMPP_2M_SDE
          • Sampler DPMPP_SDE
        • schedulers
          • Basic Scheduler
          • Exponential Scheduler
          • Karras Scheduler
          • Polyexponential Scheduler
          • SD Turbo Scheduler
          • VP Scheduler
        • sigmas
          • Flip Sigmas
          • Split Sigmas
      • KSampler
      • KSampler (Advanced)
      • Sampler
      • video-models
        • Video Linear CFG Guidance
    • Utils
      • Note
      • Primitive
      • Reroute
      • Terminal Log (Manager)
  • ComfyUI Workflow Example
    • 1-Img2Img
    • 2-2 Pass Txt2Img
    • 3-Inpaint
    • 4-Area Composition
    • 5-Upscale Models
    • 6-LoRA
    • 7-ControlNet
    • 8-Noisy Latent Composition
    • 9-Textual Inversion Embeddings
    • 10-Edit Models
    • 11-Model Merging
    • 12-SDXL
    • 13-Stable Cascade
    • 14-UnCLIP
    • 15-Hypernetworks
    • 16-Gligen
    • 17-3D Examples
    • 18-Video
    • 19-LCM Examples
    • 20-ComfyUI SDXL Turbo Examples
  • How to publish as an AI app
  • FAQ (Must see!!!)
Powered by GitBook
On this page
  • Documentation
  • Input types
  • Output types
  1. Core Nodes
  2. Sampling
  3. custom-sampling
  4. schedulers

Exponential Scheduler

PreviousBasic SchedulerNextKarras Scheduler

Last updated 4 months ago

Documentation

  • Class name: ExponentialScheduler

  • Category: sampling/custom_sampling/schedulers

  • Output node: False

The ExponentialScheduler node is designed to generate a sequence of sigma values following an exponential schedule for diffusion sampling processes. It provides a customizable approach to control the noise levels applied at each step of the diffusion process, allowing for fine-tuning of the sampling behavior.

Input types

Parameter
Comfy dtype
Description

steps

INT

Specifies the number of steps in the diffusion process. It influences the length of the generated sigma sequence and thus the granularity of the noise application.

sigma_max

FLOAT

Defines the maximum sigma value, setting the upper limit of noise intensity in the diffusion process. It plays a crucial role in determining the range of noise levels applied.

sigma_min

FLOAT

Sets the minimum sigma value, establishing the lower boundary of noise intensity. This parameter helps in fine-tuning the starting point of the noise application.

Output types

Parameter
Comfy dtype
Description

sigmas

SIGMAS

A sequence of sigma values generated according to the exponential schedule. These values are used to control the noise levels at each step of the diffusion process.